from __future__ import annotations
import typing
from typing import Union
import numpy
from openfisca_core.indexed_enums import EnumArray
if typing.TYPE_CHECKING:
from numpy.typing import ArrayLike
from openfisca_core import tracers
Array = Union[EnumArray, ArrayLike]
[docs]
class ComputationLog:
_full_tracer: tracers.FullTracer
def __init__(self, full_tracer: tracers.FullTracer) -> None:
self._full_tracer = full_tracer
def display(
self,
value: Array | None,
) -> str:
if isinstance(value, EnumArray):
value = value.decode_to_str()
return numpy.array2string(value, max_line_width=float("inf"))
def lines(
self,
aggregate: bool = False,
max_depth: int | None = None,
) -> list[str]:
depth = 1
lines_by_tree = [
self._get_node_log(node, depth, aggregate, max_depth)
for node in self._full_tracer.trees
]
return self._flatten(lines_by_tree)
[docs]
def print_log(self, aggregate=False, max_depth=None) -> None:
"""Print the computation log of a simulation.
If ``aggregate`` is ``False`` (default), print the value of each
computed vector.
If ``aggregate`` is ``True``, only print the minimum, maximum, and
average value of each computed vector.
This mode is more suited for simulations on a large population.
If ``max_depth`` is ``None`` (default), print the entire computation.
If ``max_depth`` is set, for example to ``3``, only print computed
vectors up to a depth of ``max_depth``.
"""
for _line in self.lines(aggregate, max_depth):
pass
def _get_node_log(
self,
node: tracers.TraceNode,
depth: int,
aggregate: bool,
max_depth: int | None,
) -> list[str]:
if max_depth is not None and depth > max_depth:
return []
node_log = [self._print_line(depth, node, aggregate, max_depth)]
children_logs = [
self._get_node_log(child, depth + 1, aggregate, max_depth)
for child in node.children
]
return node_log + self._flatten(children_logs)
def _print_line(
self,
depth: int,
node: tracers.TraceNode,
aggregate: bool,
max_depth: int | None,
) -> str:
indent = " " * depth
value = node.value
if value is None:
formatted_value = "{'avg': '?', 'max': '?', 'min': '?'}"
elif aggregate:
try:
formatted_value = str(
{
"avg": numpy.mean(value),
"max": numpy.max(value),
"min": numpy.min(value),
},
)
except TypeError:
formatted_value = "{'avg': '?', 'max': '?', 'min': '?'}"
else:
formatted_value = self.display(value)
return f"{indent}{node.name}<{node.period}> >> {formatted_value}"
def _flatten(
self,
lists: list[list[str]],
) -> list[str]:
return [item for list_ in lists for item in list_]