Source code for openfisca_core.tracers.flat_trace
from __future__ import annotations
import typing
from typing import Union
import numpy
from openfisca_core.indexed_enums import EnumArray
if typing.TYPE_CHECKING:
from numpy.typing import ArrayLike
from openfisca_core import tracers
Array = Union[EnumArray, ArrayLike]
Trace = dict[str, dict]
[docs]
class FlatTrace:
_full_tracer: tracers.FullTracer
def __init__(self, full_tracer: tracers.FullTracer) -> None:
self._full_tracer = full_tracer
def key(self, node: tracers.TraceNode) -> str:
name = node.name
period = node.period
return f"{name}<{period}>"
def get_trace(self) -> dict:
trace = {}
for node in self._full_tracer.browse_trace():
# We don't want cache read to overwrite data about the initial
# calculation.
#
# We therefore use a non-overwriting update.
trace.update(
{
key: node_trace
for key, node_trace in self._get_flat_trace(node).items()
if key not in trace
},
)
return trace
def get_serialized_trace(self) -> dict:
return {
key: {**flat_trace, "value": self.serialize(flat_trace["value"])}
for key, flat_trace in self.get_trace().items()
}
def serialize(
self,
value: Array | None,
) -> Array | None | list:
if isinstance(value, EnumArray):
value = value.decode_to_str()
if isinstance(value, numpy.ndarray) and numpy.issubdtype(
value.dtype,
numpy.dtype(bytes),
):
value = value.astype(numpy.dtype(str))
if isinstance(value, numpy.ndarray):
value = value.tolist()
return value
def _get_flat_trace(
self,
node: tracers.TraceNode,
) -> Trace:
key = self.key(node)
return {
key: {
"dependencies": [self.key(child) for child in node.children],
"parameters": {
self.key(parameter): self.serialize(parameter.value)
for parameter in node.parameters
},
"value": node.value,
"calculation_time": node.calculation_time(),
"formula_time": node.formula_time(),
},
}